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ABSTRACT

In a liquid a satisfactory method of defining th&fusivity so that it will be independent of reteé composition,
has yet to be devised. The recent developmentf@ttefe methods for the calculation of mass —transdites from particle
surfaces, now brings forward the need of considepiore diameters, permeabilities and porositieowedge of liquid
diffusion rates in porous solids has applicationsalid-liquid extraction and in catalysis. PiretlE, Ebel R.A. Kiang C.T.
Armstrong W. P. aimed to investigate about liquifudion rates which would be of value in the stuafyactual systems
involving porous carrier solids and to obtain ideadl extraction systems. In their work, they préseéntheoretical
expressions and experimental data for extractiomfsingle capillaries, from beds of uniform glagsdls and from inert
porous spheres carrying single-phase solution®olobke substances. They introduced the concepbood phape factor.
Pore shape factor is equal to the ratio of theaddtuthe theoretical extraction time or for anuattsphere of measured
radius R, an equivalent, idealized sphere of rakli®Ris(K > 1.0) can be postulated, whose structure offers natagsie to
diffusion. The square of this constaki£, will be called the pore shape factor. This fad®wused in interpreting and
correlating the extraction data. Here in this paperauthor intends to interpret the results, oletiin their investigations
and to derive a simple formula to determine thisepshape factor. For this purpose, Euler's Summaiormula and

Abel’s identity are applied to the analytic solumsoobtained for their experiments. This approxiorais obtained only for
small values 0%, where D is diffusivity, t is time andR is measured radius of sphere. The formula is ieerifor

experimental data. It shows nice agreement witle#peerimental data.
KEYWORDS: Extraction, Pore Shape Factor, Euler's SummatiosmEla, Abel's Identity and Big oh Notation
INTRODUCTION

Related to investigations of extraction rates, eseof experiments was carried out on the batchaetion of
single phase solutes from porous spheres by EdgRirét, R. A. Ebel, C.T. Kiang and W.P. Armstrofuniversity of
Minnesota, Minneapolis, Minnesota).[1] Aqueous sohs of potassium chloride, sodium chloride, psitas chromate,
copper sulfate, and acetic acid were extracted flome types of carrier solids of increasing comipye single capillaries,
tubes containing beds of small glass-beads andupaatumina spheres. The transfer mechanism wafiededs being
diffusional. Equations were derived for the exti@ttof a single solute from single capillaries &min spheres in the
batch-wise operation. Validity of the equation aftdh-wise operation was verified by extractiongrfrporous alumina

spheres under several conditions of concentrasioirent volume and temperature.

The influence of an inert porous solid upon diftusirate has not been extensively investigated. Gady
Williams [2] studied diffusion of urea through woéiders. They stated that the diffusion rate wasrel@sed principally by
a mechanical blocking effect of the cell structutes effect of cell wall friction on molecular moti was of much less

importance.
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Boucher, Brier and Osburn [3] found that the extoac of soybean oil from porous chaplets was a lgure
diffusional operation whose rate was decreasedhdyature of the solid. They suggested the fadfecting rate to be the
mechanical blocking by the solid, the drag on malkedue to the proximity to cell walls and the tmis path through the

solid.

Piret E. L., Ebel R.A. Kiang C.T. Armstrong W. Rudied several facts, which affect liquid diffusicates and
which would be of value in the study of actual sys$ involving porous carrier solids. In their expmnts, they studied
extraction from single capillaries, from beds offarm glass beads and from inert porous spherayioarsingle-phase
solutions of soluble substances. The new thingag they introduced the concept of pore shapeifaBore shape factor is
equal to the ratio of the actual to the theoretiodtaction time or for an actual sphere of measuadius R, an equivalent,
idealized sphere of radiuéR, (K > 1.0) can be postulated, whose structure offers nsteesie to diffusion. The square
of this constantk?, will be called the pore shape factor. This fadsoused in interpreting and correlating the exioac

data.
RESEARCH OBJECTIVES

It was the purpose of the work of the team of FiireL., Ebel R.A. Kiang C.T. and Armstrong W. P dfatain on
idealized extraction systems further basic inforarabn liquid diffusion rates. They conducted exments using: (1)

Single Capillary Investigations and (2) Porous $phevestigations.

In this paper the data obtained during their ingesions are interpreted mathematically and a snfiptmula to
predict pore shape factor is derived.

SINGLE CAPILLARY INVESTIGATION
Procedure and Data

A straight capillary tube of constant bore and knamternal length and volume, but with one end et alff, was
filled with a binary solution of known compositiofihe capillary was held in a vertical position wille open end up, and
a very slow stream of pure solvent was allowedldovfat right angles to the longitudinal axis of tbapillary. The
temperature was maintained2&t0 + 0.1 °C. After an elapsed time t, the capillary was remoa&rd the solution inside the
capillary was washed into a flask or crucible andlgzed volumetrically or gravimetrically. Amourtichcomposition of
the solution now inside the capillary were deterdinGenerally several such experiments were peddrand the data

presented aE ( per cent of extractable material remaining urseted ) vs. time of extraction t.

They used the capillary—tube method to determiedrtegral diffusivity for a number of systems. irhdata for

KCl — H,0 solutions (¢, = 4 N) are given below:

Table 1

No. t/LZ , SeC/cmz ( 100 — E)%
1 51.87 x 103 95.1
2 36.50 85.8
3 28.97 80.4
4 17.03 63.2
5 8.805 45.9
6 3.689 28.8
7 2.838 24.9
8 1.242 15.9
9 1.160 15.8
10 0.741 12.2
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Interpretations

Assuming that the solvent concentration is constamtiC, is the solute concentration aldis diffusivity of a
binary liquid system, the governing partial diffetial equation will be,

Ta= 2 (p%2) (1)

with the boundary conditions

CA Coatt:(),O:x:L
Cy=0atx=Lt>0

6CA_1 L i _
- _acfo Cydx;atx=Lt>0

Assuming, diffusivity D, to be constant, the sabati1],[4],[5] to equation (1), will be

_ 800y 1 —(2n—1)211:2Dt)
k= w2 Ln=1 (2n—1)2 exp( 412

)

For sufficiently large values of t, equation(2) mzgyapproximated as

e o e () e (22)) ®

(Considering only first two terms, as contributioom the terms after that will be negligible.)

2Dt . . 800 1
e ) equation (3) results i, = ?(y + ;y")

Taking,y = exp (

Applying this equation for the data for which Ebistween 25% to 75%, That is for:
(100 — E) = 63.2,45.9, 28.8, (for fourth, fifth and sixth observation in table)

y = 0.4539, 0.6648, 0.8488, respectively.

—-m?Dt 4xIn
) = D = Y

Moreover,y = exp (F = o)
L

So, diffusivityD = 1.87977 x 107°,1.87922 x 107%,1.801 X 10~> cm?/sec respectively.

Based on the capillary experiments, they determiméegral diffusivity of potassium chloride to He87 x

1075 cm?/sec. (Literature value of diffusivity ok Cl is 1.84 x 10~5 ¢cm?/sec.)

POROUS SPHERE INVESTIGATIONS

Procedure and Data

A series of experiments was carried out on thehbatdraction of single phase solutes from porousnailum
spheres. This was done by filling capillaries & fforous spheres by salt solutions and determthiegate of extraction
into a measured volume of solvent. The purpos&edd experiments was to determine the effect afysomedium upon
extractions. Single-phase solute is contained ioy® sphere and the sphere is placed into a fipintity of agitated

solvent. As the diffusion proceeds, the concertreith the outside solution rises.

The following table shows their experimental data éxtraction of aqueous Potassium Chloride fronops
spheres:
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Table 2

15 28.2 30 40.4 60 49.4
45 46.9 60 54.0 150 71.6
240 82.6 180 78.0 240 82.3
300 85.4 375 90.8 360 89.5
480 92.3 540 95.6 600 95.0
1140 98.8 1380 99.0 720 95.4

Interpretation
The equation for symmetrical diffusion from a pa@phere of porosity P is

oPc d°Pc N 2 dPc
at ar?2 r or

That is

ac 9%c . 2 ac

=0+ 5) @
Defining a new variable,
u = cr, (4) converts into

ou %u

5=00%) ®)
The boundary conditions are,

u=0atr=20

u=cyrwhent=20

u=crwhent>0

c=c, =C,whent=o

()= () varr=r

wherec = ¢(r,t) = Concentration of inside solution at any pairand timet , g./cc
C = Concentration of outside solution at any time,@./c
R = Radius of the sphere

The solution [1],[5] to this problem is

E= 200a? @

2
—-mp“Dt

3 o7l [M(Iia@pw e (S (6)
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Herem,, " s, are positive roots of the equatiomx = 1+x—gxz
3

a = solution ratio, volume of outside solution per uretume of solution in porous sphere.
K? = pore shape factor, to be determined yet.

In practice, porous spheres with all these chariatits were difficult to be obtained. Here an attsphere of
radiusR which usually had tortuous, constricted capillaii considered to be equivalent to an idealizéspof radius
KR.(K > 1.0) The increased length of path and the throttlifigatfof constrictions provide resistance to diftusiIn
fluid flow a valve is considered to be equivalemtrésistance to a certain length of straight pipere an actual sphere of
radiusR which usually has tortuous, constricted capillaige considered to be equivalent to an idealizéeispof radius
KR.(K > 1.0) The square of this constait? will be called the pore shape factor. This faésoalso equal to the ratio of

the actual to theoretical time, based on an idglaée, for a given per cent extraction.

In their experiments, they made early runs withiaitial inside concentration of zero and3d outside
concentration for the purpose of determining ptiagpe factors of alumina spheres. Results weregplath semi-log paper
with E per cent unextracted as the ordinate and timeminutes as the abscissa. They drew curveqydakt = 4,K? =
7, K? =9, K* =14 , and substituting an integral diffusivity dfCl to be 1.87 X 1075 sq.cm./sec , which was
determined by capillary experiments, in equation Fr large value of t, experimental results wel@se to curve for

K? =9, otherwise all points fell close to a single tregimal curve for

K? =7. [1] Thus it may be seen that variations ofidasconcentration have no effect on the data. Thian

agreement with equation (6). They accepted valug*ab be?7.

Results may be verified in other way also as fofioftor large value of t, equation (6) can be appnated as,

E= 202‘12 1am12) exp (_mlzm) (7

2p2
1+a(1+T KR

considering only first term of infinite series,da@ise then onwards contribution from the termshvélhegligible.

Fora = 25, first positive root otanx = HZLSZ ism, = 3.179 (Itis close to )
Zx
3

Substitutinga = 25,D = 1.87 x 1075 cm? /sec, R = 0.5985 cm, (as given in [1])

andm; = 3.179 in (7), now expression will be

E =

3 25x(3.179)2 K2x(0.5985)2

200%625 1 e (—(3.179)2><1.87><10_5><t)
)

1+25(1+

125000 1 -52.7587x10 7 5x¢
=E = exp >
3 727.8084 K

-5
2 _ [ 527587x1075xt
= K= (W ©)

In (3><E><727.8084—)

Using (8), the obtained results, are as follows.
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Table 3
t (in Minutes) | t (in Seconds )| E % K?
240 240x 60 17.4 6.379
300 300x 60 14.6 6.950
375 375x 60 9.2 6.493
480 480x60 7.7 7.574
1140 1140x60 1.2 9.337

It can be noticed that the valuesif obtained here, are close to 7, for the first fealues in the table and close

to 9, for the last value, similar to the resultstained using theoretical curves.
DERIVATIVE OF A SIMPLE FORMULA TO DETERMINE ~ K?

Precession and accuracy seem better for small svatié Instead of using approximation for largéueaof t,

approximation for small values of t, would be bettdere in this paper the author intends to deava@mpler formula to
determine value ok2. This formula will be valid for only small values Qt/Rz. It will be derived taking help of Euler’s

Summation Formula and Abel’s Identity. Statemefithese theorems [6] are as follows:
Euler's Summation Formula

If £ has a continuous derivatiye on the interva] y,x | , whered < y < x , then

Syensx f() = [ f(Ode + [7(t = [(Df ©de + fF)([x] = 20) = fFOIY] =) 9)
Abel’s Identity

For any arithmetical function(n), let A(x) = ¥,<, a(n), whered(x) = 0, if x < 1.

Assumef has a continuous derivative on the intefyealc], where0 < y < x. Then
Ly<nsxa(M)f(m) = A f(x) —AWf ) - fyx AW (B)dt. (10)

Derivation

With the aim to apply these wonderful theoremshtodolution (6), here it is required to determineagthmetical

function, which can be utilized agn) and a functiorf ,which has continuous derivative. Fore= 25, values of first 10

roots oftanx = —z— are:

my; = 3.179,m, = 6.302, m3 = 9.438, m, = 12.576, mg = 15.715,
mg = 18.856, m, = 21.997, mg = 25.137,my = 28.275,m;, = 31.420.
It can be noticed that asbecomes largen,, — nr. Actually the difference between, and2r is also less than

0.018815 and gradually the difference goes on decreas@maining positive, as increases.

1

1+a(1+a(nTn)2)]

1

S can be approximated .Thatis, b

1
Ol amy 2 a2 .
[1+a(1+Tn)] (1+a)+5n2n?

1 1 1
Also, as < < ,
[1+a(1+%)] [(1+a)]+ gnznz %nznz
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21

9 2 3 . .
— = ;, confirms its convergence.

< = = ——X
()| = 22 ~ @ @ X s

1 . . . . .
So, herg‘m can serve ag(n). As exponential functions have continuous deriwestjv
s

n2mw?p
exp (W) can serve here g§n).

Let y be a number between 0 and 1. 8¢y) = ¥, a(n) = 0, which fulfills requirement demanded in the
statement of the identity.

Letx be a very large number. So
A(x) = Ynexa(n) = Ypga(m) — Ynsya(n)

~ 2a2 - a2n22n>x 2

Now according to Euler's summation formula

= fzt 2 (MY g [MA]/[—;M — =X \whereM is very large number, tending to infinity.

Zx<n<M
=[S+ 06

= - (%— i) + 0(x™%) ~ %asM is tending to infinity.

M t— [t M]-M  [x]-x —
Here— 2 T 2 = O(x 2),
Mt— gt]dt+[M] 2M [x]zx
means that—=—t M X~ is bounded for att > 0.

x—2

The symbolo(x~2) represents an unspecified functiorrofvhich grows no faster than some constant tinies

The symbolO” is known as big oh notation [6].

ThusA(x) = % - LG) (11)

a?m? \x

Now using (11)

9 n“m“Dt
Z}’<n5x aZn2m? exp\— K2R2

- (i -0 ) X exp (— xznzm) — A(y) x exp (— @) - f;A(P)f'(P)dP (12)

2a? a’m2x K2R? KZ2R?

x2m?Dt
KZ2R2

2.2
) - 0.As y is very small numbetxp (—y - Dt) - 1.

As x is very large numbeexp (— iz

—2pm?Dt

HereA(p) = % - m( ) (using (11)) ang'(p) = exp( P nth) X =

KZ2R2

On substituting these results, now (12) yields,
9 n?m2Dt x( 3 9 /1 p?n?iDt\ —2pm?Dt
Z aznzm2 P\ " TkzRz ) T _fy 202~ atn? (5) e\~ kigz | X ke P

y<nsx
_ x, 3 p2n?Dt —Zpﬂ: Dt p?m?Dt —2m?Dt
- fy (Za2 exp (_ K2R?2 exp\— yzzz x K2R2 dp
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)dp (13)

3 pznth) x 9 (x ( pzn'th> —2Dt
= ——|exp|— + = | expl|—
2a2 lexp ( K2R2 ]y a? fy p K2R2 (K2R2

As x is very large ang is very small, there is no harm xifis replaced byo andy is replaced by*. Hence (13)

=9 n?m2Dt 3 p?m?Dt\_ 9 [(* p?m?Dt\ —2m?Dt
Zaznznz P\~ epe )T T2 PP\ T g ot T Lexp ~kere ) Cepe 0P

= —%(0— 1) +# (f(:iexp(—sz) (—zn—F>ds)

2a? K
3 \/ﬁ 9 ©
= - EXE(Z Jo+ exp(=s?)ds)

= %— E><%>< Vm as(2 foﬁ exp(—s?)ds) = F(l/z) =+

KR

=2 F (14)
Using (14) in (6), result will b& = 2"%‘2(%— %\/%) =100 -2 |20

Thatis,E = 100 — — — (15)
As the minimum possible value Bfis zero, the value 061‘;—0\/% can't exceed 100,

. . . t
so this formula is valid for only small values\% ,

2
and>> |22 < 100 = [ < - = L < T (16)
K TR TR 6 R 36
(600)2xDt
Thus, for small values of%, K? = —2/"” 17)
R (100—E)2x1

Using (17) for small values of(t < 60) frm Table-2, results obtained are as follows.

Table 4
Initial . (100
: t(in Dt
Concentration — —E)% K?
Inside Seconds) R2

(1) 0.224 5x 60 | 0.0156615 16.3| 6.7547
15x 60 | 0.0469846] 28.2| 6.7703
45x 60 | 0.1409539] 46.9| 7.3431
(2) 0.114 10x 60 | 0.0313231] 24.1| 6.1799
30x 60 | 0.0939693] 40.4| 6.5974
60x 60 | 0.1879385 54.0| 7.3855
(3) 0.307 20x 60 | 0.0626462] 33.8| 6.2836
60x 60 | 0.1879385 49.4| 8.8249

©COFR, BANOOWO
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CONCLUSIONS
e It can be noticed that except for last observaitiohable-4, all the experimental data show goocegrent.
There might be any error in recording the last olagén.

« Taking the mean of first seven observatidtis = 6.75926 with standard deviation = 0.46926.

* |t can be also noticed that initial inside concatdn has no effect on extraction rate.

e It can be noticed thatﬁf% < 0.09, that is ift < 30 minutes, then there is better agreement in results.

Thus Formula (17) can be used to predict pore sfeagper K ? for small values o;f—;.
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