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ABSTRACT 

In a liquid a satisfactory method of defining the diffusivity so that it will be independent of relative composition, 

has yet to be devised. The recent development of effective methods for the calculation of mass –transfer rates from particle 

surfaces, now brings forward the need of considering pore diameters, permeabilities and porosities. Knowledge of liquid 

diffusion rates in porous solids has applications in solid-liquid extraction and in catalysis. Piret E. L., Ebel R.A. Kiang C.T. 

Armstrong W. P. aimed to investigate about liquid diffusion rates which would be of value in the study of actual systems 

involving porous carrier solids and to obtain idealized extraction systems. In their work, they presented theoretical 

expressions and experimental data for extraction from single capillaries, from beds of uniform glass beads and from inert 

porous spheres carrying single-phase solutions of soluble substances. They introduced the concept of pore shape factor. 

Pore shape factor is equal to the ratio of the actual to the theoretical extraction time or for an actual sphere of measured 

radius R, an equivalent, idealized sphere of radius ��, (� > 	1.0) can be postulated, whose structure offers no resistance to 

diffusion. The square of this constant,	�	, will be called the pore shape factor. This factor is used in interpreting and 

correlating the extraction data. Here in this paper the author intends to interpret the results, obtained in their investigations 

and to derive a simple formula to determine this pore shape factor. For this purpose, Euler’s Summation Formula and 

Abel’s identity are applied to the analytic solutions obtained for their experiments. This approximation is obtained only for 

small values of 

��
, where � is diffusivity, t is time and � is measured radius of sphere. The formula is verified for 

experimental data. It shows nice agreement with the experimental data. 
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INTRODUCTION  

Related to investigations of extraction rates, a series of experiments was carried out on the batch extraction of 

single phase solutes from porous spheres by Edgar L. Piret, R. A. Ebel, C.T. Kiang and W.P. Armstrong (University of 

Minnesota, Minneapolis, Minnesota).[1] Aqueous solutions of potassium chloride, sodium chloride, potassium chromate, 

copper sulfate, and acetic acid were extracted from three types of carrier solids of increasing complexity: single capillaries, 

tubes containing beds of small glass-beads and porous alumina spheres. The transfer mechanism was verified as being 

diffusional. Equations were derived for the extraction of a single solute from single capillaries and from spheres in the 

batch-wise operation. Validity of the equation of batch-wise operation was verified by extractions from porous alumina 

spheres under several conditions of concentration, solvent volume and temperature. 

The influence of an inert porous solid upon diffusion rate has not been extensively investigated. Cady and 

Williams [2] studied diffusion of urea through wood fibers. They stated that the diffusion rate was decreased principally by 

a mechanical blocking effect of the cell structure; the effect of cell wall friction on molecular motion was of much less 

importance. 
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Boucher, Brier and Osburn [3] found that the extraction of soybean oil from porous chaplets was a purely 

diffusional operation whose rate was decreased by the nature of the solid. They suggested the factor affecting rate to be the 

mechanical blocking by the solid, the drag on molecule due to the proximity to cell walls and the tortuous path through the 

solid. 

Piret E. L., Ebel R.A. Kiang C.T. Armstrong W. P. studied several facts, which affect liquid diffusion rates and 

which would be of value in the study of actual systems involving porous carrier solids. In their experiments, they studied 

extraction from single capillaries, from beds of uniform glass beads and from inert porous spheres carrying single-phase 

solutions of soluble substances. The new thing is that, they introduced the concept of pore shape factor. Pore shape factor is 

equal to the ratio of the actual to the theoretical extraction time or for an actual sphere of measured radius R, an equivalent, 

idealized sphere of radius ��, (� > 	1.0) can be postulated, whose structure offers no resistance to diffusion. The square 

of this constant, �	, will be called the pore shape factor. This factor is used in interpreting and correlating the extraction 

data. 

RESEARCH OBJECTIVES 

It was the purpose of the work of the team of Piret E. L., Ebel R.A. Kiang C.T. and Armstrong W. P. to obtain on 

idealized extraction systems further basic information on liquid diffusion rates. They conducted experiments using: (1) 

Single Capillary Investigations and (2) Porous Sphere Investigations.  

In this paper the data obtained during their investigations are interpreted mathematically and a simple formula to 

predict pore shape factor is derived. 

SINGLE CAPILLARY INVESTIGATION  

Procedure and Data 

A straight capillary tube of constant bore and known internal length and volume, but with one end sealed off, was 

filled with a binary solution of known composition. The capillary was held in a vertical position with the open end up, and 

a very slow stream of pure solvent was allowed to flow at right angles to the longitudinal axis of the capillary. The 

temperature was maintained at 25.0 ± 0.1	℃. After an elapsed time t, the capillary was removed and the solution inside the 

capillary was washed into a flask or crucible and analyzed volumetrically or gravimetrically. Amount and composition of 

the solution now inside the capillary were determined. Generally several such experiments were performed and the data 

presented as � ( per cent of extractable material remaining unextracted ) vs. time of extraction t. 

They used the capillary–tube method to determine the integral diffusivity for a number of systems. Their data for ��� − �	� solutions (�� = 4 N) are given below:  

Table 1 

No. � ��	� , � ! !"��  (	#$$ − %)% 
1 51.87 × 10+ 95.1 
2 36.50 85.8 
3 28.97 80.4 
4 17.03 63.2 
5 8.805 45.9 
6 3.689 28.8 
7 2.838 24.9 
8 1.242 15.9 
9 1.160 15.8 
10 0.741 12.2 
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Interpretations 

Assuming that the solvent concentration is constant, and �, is the solute concentration and � is diffusivity of a 

binary liquid system, the governing partial differential equation will be, 

 
-./-� =	 --1 2� -./-1 3	                               (1) 

with the boundary conditions 

 �, =	��	45	5 = 0, 0 = 6 = 7 

 �, = 	0	45	6 = 7, 5 > 0	 
 � -./-1 = --� 8 �,9� :6	; 	45	6 = 7, 5 > 0	 
Assuming, diffusivity D, to be constant, the solution [1],[4],[5] to equation (1), will be 

� = 	 <��=
 ∑ ?(	@A?)
∞@B? C6D 2A(	@A?)
=

�E9
 3	       (2) 

For sufficiently large values of t, equation(2) may be approximated as 

� = 	 <��=
 2	C6D 2A=

�E9
 3 + ?G 	C6D 2AG=

�E9
 3	3	          (3) 

(Considering only first two terms, as contribution from the terms after that will be negligible.)  

Taking, H = 	C6D 2A=

�E9
 3, equation (3) results in, � =	 <��=
 2H + ?G HG3 
Applying this equation for the data for which E is between 25% to 75%, That is for: 

(100 − �) = 63.2, 45.9, 28.8, (for fourth, fifth and sixth observation in table), 

H = 0.4539, 0.6648, 0.8488, respectively. 

Moreover, H = 	C6D 2A=

�E9
 3 ⟹ 	� =	 E×NO P=
×� 9
� 	.  
So, diffusivity � = 1.87977 × 10AQ, 1.87922 × 10AQ, 1.801 × 10AQ 	RS	 TCR⁄  respectively. 

Based on the capillary experiments, they determined integral diffusivity of potassium chloride to be 1.87 ×10AQ 	RS	 TCR⁄ . (Literature value of diffusivity of ��� is 1.84 × 10AQ 	RS	 TCR⁄ . ) 

POROUS SPHERE INVESTIGATIONS  

Procedure and Data 

A series of experiments was carried out on the batch extraction of single phase solutes from porous aluminum 

spheres. This was done by filling capillaries of the porous spheres by salt solutions and determining the rate of extraction 

into a measured volume of solvent. The purpose of these experiments was to determine the effect of porous medium upon 

extractions. Single-phase solute is contained in porous sphere and the sphere is placed into a finite quantity of agitated 

solvent. As the diffusion proceeds, the concentration in the outside solution rises. 

The following table shows their experimental data for extraction of aqueous Potassium Chloride from porous 

spheres: 
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Table 2 

Salt KCl Initial Outside Concentration = 0 
Temperature˚ c 25 25 25 

Initial Inside 
Concentration g/ml 

0.224 0.114 0.307 

Solution Ratio a 25 25 25 
 t (Minutes) (100-E) % t ( Minutes) (100-E) % t ( Minutes) (100-E) % 
 5 16.3 10 24.1 20 33.8 
 15 28.2 30 40.4 60 49.4 
 45 46.9 60 54.0 150 71.6 
 240 82.6 180 78.0 240 82.3 
 300 85.4 375 90.8 360 89.5 
 480 92.3 540 95.6 600 95.0 
 1140 98.8 1380 99.0 720 95.4 

 

Interpretation 

The equation for symmetrical diffusion from a porous sphere of porosity P is  

VWRV5 = � XV	WRVY	 + 2Y 	VWRVY Z	 
That is 

 
-[-� = � 2-
[-\
 + 	\ 	-[-\3        (4) 

Defining a new variable, 

] = RY, (4) converts into  

  
--̂� = � 2-
^-\
3                 (5) 

The boundary conditions are, 

 u = 0	at	r = 0	 
 u = c�r	when	t = 0 

 u = cr	when	t > 0 

 c = c∞ = C∞	when	t = ∞ 

 2ijik3kBl =	2imin3 	V	at	r = R 

 where R = R(	Y, 5) = Concentration of inside solution at any point Y and time 5	,	g./cc 

 � =	Concentration of outside solution at any time, g./cc 

 � =	Radius of the sphere 

 The solution [1],[5] to this problem is  

 � = 	��q
+ ∑ ?
r?sqX?stuv
w Zx∞yB? 	C6D 2Azv

�{
�
 3	            (6) 
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 Here	Syʹ s, are positive roots of the equation 54|6 = 1?s	t}1
  
 4 =	solution ratio, volume of outside solution per unit volume of solution in porous sphere. 

�	 = pore shape factor, to be determined yet. 

In practice, porous spheres with all these characteristics were difficult to be obtained. Here an actual sphere of 

radius � which usually had tortuous, constricted capillaries is considered to be equivalent to an idealized sphere of radius ��. (	� > 1.0) The increased length of path and the throttling effect of constrictions provide resistance to diffusion. In 

fluid flow a valve is considered to be equivalent in resistance to a certain length of straight pipe. Here an actual sphere of 

radius � which usually has tortuous, constricted capillaries is considered to be equivalent to an idealized sphere of radius ��. (	� > 1.0	) The square of this constant, �	 will be called the pore shape factor. This factor is also equal to the ratio of 

the actual to theoretical time, based on an ideal sphere, for a given per cent extraction. 

In their experiments, they made early runs with an initial inside concentration of zero and a 3~ outside 

concentration for the purpose of determining pore shape factors of alumina spheres. Results were plotted on semi-log paper 

with � per cent unextracted as the ordinate and time 5 in minutes as the abscissa. They drew curves, taking �	 = 4,�	 =7, 	�	 = 9, 	�	 = 14 , and substituting an integral diffusivity of ��� to be 1.87 × 10AQ	T�. RS./TCR , which was 

determined by capillary experiments, in equation (6). For large value of t, experimental results were close to curve for �	 = 9, otherwise all points fell close to a single theoretical curve for 

�	 =7. [1] Thus it may be seen that variations of inside concentration have no effect on the data. This is an 

agreement with equation (6). They accepted value of �	 to be 7. 
Results may be verified in other way also as follows: For large value of t, equation (6) can be approximated as,  

 � = 	 	��q
+ � ?
?sq�?stu�
w � 	C6D 2Az�

�{
�
 3�              (7) 

 considering only first term of infinite series, because then onwards contribution from the terms will be negligible. 

For 4 = 25, first positive root of 54|6 = 1?s	
�} 1
 is S? = 	3.179 (It is close to  ) 

Substituting 4 = 25, � = 1.87 × 10AQ RS	 TCR⁄ , � = 0.5985	RS,	(as given in [1]) 

 and S? = 3.179 in (7), now expression will be  

 � = 	 	��×�	Q+ � ?
?s	Q�?s
�×(}.��w)
w � 	C6D 2A(+.?�G)
×?.<�×?���×�{
×(�.QG<Q)
 3�  

 ⟹ �	 = 	 ?	Q���+ X ?�	�.<�<E 	C6D 2AQ	.�Q<�×?���×�{
 3Z 

 ⟹ �	 =	XQ	.�Q<�×?���×�NO	( �
����}×�×�
�.����)Z           (8) 

Using (8), the obtained results, are as follows.  
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Table 3 � (in Minutes) � (in Seconds ) E % �� 
240 240×	60 17.4 6.379 
300 300× 60 14.6 6.950 
375 375× 60 9.2 6.493 
480 480×60 7.7 7.574 
1140 1140×60 1.2 9.337 

 

It can be noticed that the values of �	 obtained here, are close to 7, for the first four values in the table and close 

to 9, for the last value, similar to the results, obtained using theoretical curves. 

DERIVATIVE OF A SIMPLE FORMULA TO DETERMINE �� 

Precession and accuracy seem better for small values of t. Instead of using approximation for large value of t, 

approximation for small values of t, would be better. Here in this paper the author intends to derive a simpler formula to 

determine value of �	. This formula will be valid for only small values of Dt R	� . It will be derived taking help of Euler’s 

Summation Formula and Abel’s Identity. Statements of these theorems [6] are as follows: 

Euler’s Summation Formula 

If �	has a continuous derivative � ′ on the interval [	H, 6	] , where 0 < H < 6 , then  

∑ �(|)P�@�1 = 8 �(5):5 + 8 (	5 − [5])� ′(5):5 + �(6)([6] − 6) − 	�(H)([H] − H)							1P1P 			                                  (9) 

Abel’s Identity 

For any arithmetical function 4(|), let �(6) = 	∑ 4(|),@�1  where �(6) = 0, if 6 <	1. 

Assume � has a continuous derivative on the interval[	H, 6], where	0 < 	H < 6. Then 

∑ 4(|)�(|)P�@	�1 = �(6)�(6) − �(H)�(H) −	8 �(5)� ′(5):5.1P 																																																																																		 (10) 

Derivation 

With the aim to apply these wonderful theorems to the solution (6), here it is required to determine an arithmetical 

function, which can be utilized as 4(|) and a function � ,which has continuous derivative. For 4 = 25, values of first 10 

roots of tan 6 = 	 1?st}1
 are: 

	S? = 3.179	,S	 = 6.302, 	S+ = 9.438,SE = 12.576, 	SQ = 15.715,	 
S� = 18.856,S� = 21.997,S< = 25.137,SG = 28.275,S?� = 31.420. 

It can be noticed that as | becomes large, S@ → |�. Actually the difference between S	 and 2� is also less than 0.018815 and gradually the difference goes on decreasing, remaining positive, as | increases. 

So, 
?

�?sq�?stu�
w �� can be approximated by 
?

�?sq�?st(��)
w ��. That is, by 
?

�(?sq)st
w @
=
�. 
Also, as 

?
�?sq�?stu�
w �� 	≤ ?

[(?sq)]s	t
w @
=
 	< 	 ?t
w @
=
 ,  
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 ∑ ?
�?sq�?stu�
w �� 	≤ 	∑ ?t
w @
=
 	= 	 Gq
=
∑ ?@
∞? =	 Gq
=
 × =
� = +	q
, confirms its convergence. 

So, here 
?t
w @
=
	can serve as 4(|). As exponential functions have continuous derivatives,  

C6D 2A@
=

�{
�
 3 can serve here as �(|). 
Let H be a number between 0 and 1. So, �(H) = 	∑ 4(|) = 0@�P , which fulfills requirement demanded in the 

statement of the identity. 

Let 6 be a very large number. So 

 �(6) = 	∑ 4(|)@�1 =	∑ 4(|)∞@B? −	∑ 4(|)∞@�1  

     = +	q
 	− 	 Gq
=
∑ ?@
∞@�1  

Now according to Euler’s summation formula 

∑ ?@
 = 8  ��
¡11�@�¡ − 28 �A[�]�}¡1 :5 + [¡]A¡¡
 − [1]A11
 , where ¢ is very large number, tending to infinity. 

   = [A?� ]1¡ + 	O(6A	)  
              =	− 2	?¡ − ?13 + 	O(6A	)	~	?1	as ¢ is tending to infinity. 

Here −28 �A[�]�}¡1 :5 + [¡]A¡¡
 − [1]A11
 	= 	O(6A	),	 
means that 

A	8 ¥�[¥]¥}¦§  �s[¦]�¦¦
 A[§]�§§
 ,
1�
  is bounded for all 6 > 0.  

The symbol O(6A	) represents an unspecified function of 6 which grows no faster than some constant times 6A	. 

The symbol ̀O´ is known as big oh notation [6]. 

Thus �(6) = +	q
 	− 	 Gq
=
 2?13																																																																																																																																																		(11) 

Now using (11)  

 ∑ Gq
@
=
P�@�1 C6D 2− @
=

�{
�
 3 
= 2 +	q
 	− 	 Gq
=
13 × 	C6D 2− 1
=

�{
�
 3 − �(H) × C6D 2− P
=

�{
�
 3 − 8 �(D)� ′(D):D1P 																																																			(12) 

As 6 is very large number, C6D 2− 1
=

�{
�
 3 → 0.As y is very small number	C6D 2− P
=

�{
�
 3 → 1. 

Here �(D) = 	 +	q
 	− 	 Gq
=
 2?y3 (using (11)) and	� ′(D) = C6D 2− y
=

�{
�
 3 × A	y=

�{
�
 . 

On substituting these results, now (12) yields, 

© 94	|	�	P�@�1 C6D X−|	�	�5�	�	 Z = 	−	ª «	 324	 	− 	 94	�	 �1D�¬ 	C6D X−D	�	�5�	�	 Z × −2D�	�5�	�	 :D1
P 	 

 = −8 ( +	q
1P 	C6D 2− y
=

�{
�
 3 × A	y=

�{
�
 ):D	 +	8 Gq
=
1P 2	C6D 2− y
=

�{
�
 3 × A	=

�{
�
 3 	:D 
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 =	− +	q
 [C6D 2− y
=

�{
�
 3]P1 	+ 	 Gq
 8 C6D 2− y
=

�{
�
 3 (1P A	
�{
�
):D																																																																																					(13) 

As 6 is very large and H is very small, there is no harm, if 6 is replaced by ∞ and H	is replaced by 0s. Hence (13) 

yields  

© 94	|	�	 C6D X−|	�	�5�	�	 Z∞

@B? =	− 324	 [C6D X−D	�	�5�	�	 Z]�­∞ +	 94	�	ª C6D X−D	�	�5�	�	 Z (∞

�­
−2�	�5�	�	 ):D 

 = − +	q
 (	0 − 1) + Gq
=
 	28 C6D(−T	) 2− 	=√
�{� 3 :T∞�­ 3	 
 =	 +	q
 −	√
�{� × Gq
= ¯2 8 C6D(−T	):T∞�­ ° 
 =	 +	q
 −	√
�{� × Gq
= ×	√� as ̄ 28 C6D(−T	):T∞�­ ° = 	±¯1 2� ° = 	√� 

 =	 +	q
 −	 Gq
{² 
�=�
																																																																																																																																																																				 (14) 

Using (14) in (6), result will be � = 	 	��q
+ X +	q
 −	 Gq
{² 
�=�
Z = 100 − ���{ ² 
�=�
 

That is, � = 	100 − ���{ ² 
�=�
																																																																																																																																																		 (15) 

As the minimum possible value of �	is zero, the value of 
���{ ² 
�=�
 can’t exceed 100,  

so this formula is valid for only small values of ²
��
 , 

and 
���{ ² 
�=�
 	≤ 	100	 ⟹	² 
�=�
 	≤ 	{� 	⟹ 	
��
 ≤	 ={


+� 																																																																																																									(16) 

 Thus, for small values of ²
�	�
 , �	 =	 (���)
×
� �
�(?��A³)
×= 																																																																																																													(17) 

 Using (17) for small values of 5	(	5	 ≤ 60	) frm Table-2, results obtained are as follows.  

Table 4 

Initial 
Concentration 

Inside 

� (in 
Seconds) 

´�µ� 
(	#$$− %)% 

 
�� 

(1) 0.224 5 × 60 0.0156615 16.3 6.75479 
 15× 60 0.0469846 28.2 6.77033 
 45× 60 0.1409539 46.9 7.34318 

(2)  0.114 10× 60 0.0313231 24.1 6.17992 
 30× 60 0.0939693 40.4 6.59744 
 60× 60 0.1879385 54.0 7.38551 

(3)  0.307 20× 60 0.0626462 33.8 6.28368 
 60× 60 0.1879385 49.4 8.82499 
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CONCLUSIONS 

• It can be noticed that except for last observation in Table-4, all the experimental data show good agreement.  

There might be any error in recording the last observation. 

• Taking the mean of first seven observations, �	 = 6.75926	with standard deviation T = 0.46926. 

• It can be also noticed that initial inside concentration has no effect on extraction rate. 

• It can be noticed that if 

��
 ≤ 0.09, that is if 5 < 30	minutes, then there is better agreement in results. 

Thus Formula (17) can be used to predict pore shape factor �	 for small values of 

��
. 
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